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& ISHM for Exploration Systems

The art and science of managing off-nominal conditions
systems may encounter during their operational life
either by designing out failures early on,
or designing in the capability to safeguard against or
mitigate failures

« Key enabler for crew self sufficiency and
even autonomy

| =
* True ISHM has never been achieved rI
« Key limitation: ISHM typically retrofitted -

onto subsystems after the vehicle has been
designed or even built J]if




ISHM Challenge for Exploration Missions

ISHM design must be part of the overall
design process and viewed as a system
engineering discipline, encompassing a

range of technologies & methods
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A Facing the Challenge of ISHM Design

« Early influence on system design to guide choice of health
management methods and technologies

— Eliminate/reduce likelihood of failure by design through part
selection and built-in redundancy

— Prognosis in conjunction with preventative maintenance

— Fault management with diagnosis and recovery technologies

« Failure modes & effects analysis activities for ISHM

— Feed fault information into the design process to create
simulations of faults and improved designs to deal with faults

« The initial design must be examined in the context of the full
system life cycle
— Include all stakeholders (ops, maintenance, etc.) in the design

— Solution optimized in terms of well-defined Figures of Merit
(FOMs)



4" The current state of ISHM Design

 Insufficient interaction during the design process between
failure analysis activities and design processes to prevent or
mitigate these failures

» Limited interaction between reliability analyses and design
processes

- Little interaction between operational training simulations and
assessments of operational dependability and design process

« Operations and maintenance costs and risks become much
larger than initially projected during Phase A initial design

« No formal tools and methodologies to allow program
managers and engineering designers to formulate a clear
understanding of the impact of the decisions on the
downstream phases such as operations and maintenance on
the systems design, and vice versa



ISHM Design Goal

“DESIGN IN” THE ISHM CAPABILITY FROM THE BEGINNING!

* Good news: Current interest is strong!

— First international forum on Integrated Systems Health Engineering and
Management held in November

— CEV/CLV
« Bad news: We lack methodologies & tools to achieve this!

 Some successful attempts
— Requirements: Specify ISHM “shall” statements at beginning of project
 Joint Strike Fighter (5% of requirements are HM related)
« Boeing 777
« CEV and CLV (planned)

— Trade Studies: Integrate ISHM design with system-level design and do
trade studies with ISHM as a design attribute

» Northrop/NASA ARC SA&O effort for 2nd Gen RLV program
* Honeywell/QSI SA&O and modeling effort

— Integrate operations and maintenance considerations into design:
« Boeing 777



A The ISHM Design Paradigm:
Changing the Way ISHM Design is Done

Risk lists, Failure Modes
Reliability Models
Sensor selection

Functional Requirements PRA/QRA Maintainability
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Proposed Design Paradigm Shift #1: Integrate ISHM design into very early
functional design stage (including failure and reliability analyses)

Proposed Design Paradigm Shift #2: Assess impact/tradeoffs of ISHM Figures
of Merit (FOMs) on system level FOMs from all stakeholders throughout mission
lifecycle



A Key Challenges for Paradigm Shift

 Embedding ISHM design into early functional design requires
high-level modeling and analyses
— Models of system components and design parameters are not yet available
— Integrating health management for complex systems requires capability to
model functionality of individual subsystems as well as their interactions
« Conducting failure, reliability and risk analyses during functional

design stage
— Need mathematical techniques for risk assessment and resource allocation
under uncertainty must be incorporated with high-level analyses
* Design of ISHM is multidisciplinary and multi-objective by nature
— Need mathematical framework to achieve effective analysis & optimization

— Designing an ISHM that encompasses all subsystems of a space mission is
the result of interaction among engineers and managers from different
disciplines with their own domain expertise



Candidate Design Methods

e Risk and Reliability Based Design Methods

— PRA, FTA, FMEA/FMECA, reliability block diagrams, event sequence
diagrams, safety factors, knowledge-based methods, expert
elicitation

e Design for Testability Methods

e Formal design theory and methodology
— Function-based design and modeling

— Mathematical techniques:
e Uncertainty modeling, decision-based design, risk-based design, design
optimization, etc.
— Design for X methodologies

e Design for ISHM, Design for maintainability, Design for failure
prevention, ...



CSDE group R&D efforts

e Function-based modeling and failure analysis

e Risk assessment by portfolio management
and optimization

e Multi-objective and multi-disciplinary system
analysis & optimization



A Function-Based Design, Modeling &
~ Failure Modes Analysis for ISHM Design

« Develop “functional model” of vehicle and ISHM subsystems

« Standardized representation enables retrieval of design
knowledge based on common functionality
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« Correlate historical and potential failure modes with functionality

« Functional model as living document during system lifecycle from
design through operations



4

The ISHM System Functional Blueprint

Ex: Design of the ADAPT testbed at NASA ARC

« Used to discover interfaces and interactions between functions

« Used to add required functionality for ISHM (detect, sense, activate, etc.)
« Used to discover functional failures and add safeguards




A Function-Based Failure Modes Analysis
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4 Resource allocation to minimize risks
due to functional failures

« Use of formal risk-based design and optimization
techniques for ISHM risk assessment

— Risk-informed trade study framework to account for risk &
uncertainty in early design: RUBIC design

— Framework for quantifying risk due functional failures and
allocating resources for risk reduction during concurrent design

— Starting from the functional model, RUBIC optimally allocates
resources to mitigate risks due to functional failures

e Ex of resources: hours spent on analysis, redesign, dollars
allocated, acquiring more reliable components, adding
redundancy, etc.



A Resource Reallocation to Minimize Risk
" and Uncertainty due Functional Failures
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System Analysis & Optimization
(SARO)

« SA&O Framework

 Current Enhancements:

Select a set of Figures-of-Merit

Select a set of models---such as cost, safety, operations, reliability, false
alarm rates and maintainability---that generate FOMs

Determine the tools to implement the models
Determine the data flow requirements between the models//\\Ma‘S;
Perform trade studies

Multi-objective & multi-disciplinary optimization
Data flow/exchange environment (implemented in Model Cente
Automation for rapid trade analyses

Ability to feed back into functional design stage:
« Add new functionality to enable ISHM to operate as an integrated system?
« Change functionality to enable maintainability, performance, reduce risk?



ISHM System Analysis & Optimization
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4 Multi-Disciplinary, Multi-Objective
Optimization for ISHM Design

« ISHM design can be formulated as an optimization problem
— ISHM Design Variables
— ISHM Objectives (Figures of Merit)
— ISHM Design Constraints: Feasibility Constraints + Hard Requirements

« Multi-objectives/constraints in each sub-system
— Functionally separable F;; and exclusive f;
— S Metric to encourage convergence; H Metric to encourage diversity
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4 Summary & Conclusions

« ISHM is a key enabler for exploration systems
 Towards ISHM as a systems engineering discipline and co-design with
vehicle systems
« Complex System Design & Engineering Group Research
— Function based failure modes analysis
— Risk and uncertainty based design
— ISHM system analysis and optimization (SA&QO)

— Current Involvement:
« CEV, CLV for Constellation/ESMD
« |VHM and Aging Aircraft for Aviation Safety/ARMD

An ISHM design paradigm shift is
required for a successful and
sustainable exploration endeavor
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